Bí quyết kiếm điểm nằm ở dạng số tự nhiên lớp 6

Là một kiến ​​thức quan trọng và thường xuyên xuất hiện trong đề kiểm tra lớp 6, phần luyện tập cấu tạo số tự nhiên đòi hỏi học sinh phải nắm vững các kỹ năng phân tích số học, số thành đơn vị và đường thẳng. Thầy Bùi Minh Mẫn, giáo viên Toán hệ thống giáo dục Hocmai.vn, đã tổng hợp các dạng đề và đề xuất phương pháp giải phù hợp, dễ hiểu giúp học sinh dễ trúng thưởng. … Theo ông Mann, bản chất của việc phân tích cấu trúc của các con số là viết các số dưới dạng số nguyên, tức là hàng trăm hoặc hàng nghìn … Tách các số cần tìm và tìm câu trả lời ở các phần liên quan. Công cụ quan trọng của thuật toán là số chia sẽ chọn giá trị thích hợp dựa trên kết quả so sánh. Đây là một dạng toán linh hoạt, cần sử dụng các phương pháp dựa trên khả năng phân tích và theo yêu cầu của bài toán. Để sử dụng các dạng bài tập nâng cao, bạn có thể cần áp dụng một số biểu diễn kỹ thuật số đặc biệt.

Giáo viên tóm tắt 3 dạng phân tích cấu trúc số.

Dạng bài 1: viết hoặc trừ một hoặc một số số ở bên phải, chuyển sang bên trái hoặc chuyển giữa các số tự nhiên (bài toán đố)

Trước hết học sinh phải biểu diễn số cần tìm dưới dạng . — Ví dụ: hàng trăm số có ba chữ số, học sinh diễn đạt dưới dạng abc, theo câu hỏi thêm bớt số ta được số mới chưa biết là số ban đầu. Việc các em phải làm là tìm các giá trị a, b, c để thay thế, sau đó học sinh chia dãy số cần tìm thành các chục, 100.000 và 100.000 đơn vị để phân tích. .. phụ thuộc vào số lượng bit. Sau đó, tìm cách đơn giản hóa hoàn toàn phép tính và tìm công thức toán học đơn giản nhất (abc bằng một số) – nếu dạng nhỏ nhất của phép tính không cho kết quả cụ thể thì học sinh có thể áp dụng giả thiết liên kết ẩn số với các số trong đơn vị Trong dãy (1 đến 9), tìm phần dư của ẩn bị ẩn bởi ẩn số được gán và so sánh các bài toán để tìm giá trị được gán thỏa mãn chúng.

Dạng ví dụ của Bài 1.

Bài 2: Tìm một số thỏa mãn đề bài

Ở dạng này, lời khuyên làm bài thi không khác nhiều so với đề đầu tiên. Học sinh cần chú ý mối quan hệ giữa hai vế của bài toán, chuyển một vế thành dạng của một bộ phận để tính tương đương với vế còn lại, linh hoạt để đơn giản hóa phép tính.

Có 3 kết hợp trường xảy ra sau khi tính toán tối thiểu hóa: một là tìm giá trị cuối cùng ngay lập tức, hai là một biểu thức đơn giản hóa có thể suy ra giá trị của biến đơn vị và thứ ba là một tình huống phức tạp hơn-không Trực tiếp tìm kết quả kiểm tra cần được thực hiện (gán một giá trị).

Lấy ví dụ về đồ thị của 2 hình để tìm số tự nhiên.

Câu 3: Tính tổng phức của các số tự nhiên, tổng và sinh ra các số của chúng

đây là một dạng toán buộc bài toán liên quan đến một số lớn (hàng chục nghìn) với các số phức ẩn (a, b, c, d, ..) nghĩa là những con số nên nếu học sinh phân tích theo thứ tự thông thường sẽ rất phức tạp. Một cách nhanh chóng là xóa các giá trị bằng cách gán các hàm ý có liên quan nhất đến vấn đề và các điều kiện dễ xác định nhất.

Ví dụ: abcd + a + b + c + d = 2031, do đó điều kiện là, nếu a khác 0 thì a phải nhỏ hơn 3 để cả hai bằng nhau. Vì vậy, học sinh sẽ tìm hai giá trị để cố gắng đặt a là 1 và 2. Sau khi chia các ẩn số, việc tính toán trở nên dễ dàng hơn bằng cách giảm các ẩn số của bài toán và trở về trạng thái quen thuộc dưới dạng bảng. Toán học trước.

Bước tiếp theo, phương pháp thông thường là chuyển một số tự nhiên phức thành nhiều phép tính để giảm đơn vị số xuống một, hủy cả hai vế để trả về một đơn vị, có, bạn có thể gán giá trị để kiểm tra và dựa trên bài toán Tình trạng tìm thấy kết quả. -Ví dụ minh họa dạng câu 3

— Một số lưu ý để tránh bị mất điểm

Trước tiên, các em nên đọc kỹ câu hỏi tìm số nguyên hay tìm số đơn vị tạo nên số đó, vì nhiều bạn thường làm Quên kết luận cuối cùng và không may bị mất điểm. Để tránh lỗi này, bạn phải đọc lại câu hỏi một cách cẩn thận lần trước và nhớ viết phần kết luận (theo định dạng của tờ giấy) sau đó.

Thứ hai, bạn phải nhớ đối chiếu với điều kiện. cho. Đây là một khía cạnh tinh tế của kỳ thi. Các câu hỏi nâng cao thường đi kèm với các điều kiện bổ sung. Khi câu trả lời được tìm thấy, học sinh thường vui mừng, nhưng quên để phù hợp với điều kiện đã cho. Đặc biệt, điều kiện này trở thành cơ sở để loại bỏ các bước dài và các tình huống thừa trong tính toán (ví dụ, cần tìm các số khác không …) – toán học là một loại tư duy và biểu thức logic. Học toán rất quan trọng, là tìm ra cáchPhương pháp sản xuất và tìm hiểu kiến ​​thức, không phải phương pháp học máy. Sau khi bạn đã hiểu rõ về cách dựng các hình trên được tạo bởi các số tự nhiên, bạn có thể nhận được tất cả các điểm.

(Nguồn: Hocmai.vn)

Leave A Reply